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Heteropolynuclear metal complexes have been the subject of intensive studies, be-

cause of the interest in the developing of new molecular-based magnetic materials

[1–4], catalytic precursors [5] and also to understand the structure and functioning of

metallobiomolecules [6,7]. In continuation of our work [8,9] regarding thiocya-

nato-bridged heterocomplexes consisting three-atoms pathway for exchange coupling,

we report here the preparation, spectroscopic and magnetic characterization of three

new bimetallic complexes: [Ni(en)2]3[Cr(NCS)6]2�H2O (1), [Ni(1,1-dmen)2]3[Cr(NCS)6]2�

H2O (2) and [Ni(tn)2]3[Cr(NCS)6]2�4H2O (3), where en = ethylenediamine; 1,1-dmen =

1,1-dimethylethylenediamine; tn = 1,3-diaminopropane.

All chemicals used were reagent grade. K3[Cr(NCS)6]·4H2O was obtained by de-

scribed procedure [10]. The new compounds were prepared in a similar manner. The

appropriate diamine (2 mmol) was added to a 30 ml hot aqueous solution of NiSO4�

7H2O (1 mmol) and formed a violet (1), blue (2) and navy blue (3) solution was then

added dropwise to a 40 ml aqueous solution of K3[Cr(NCS)6]·4H2O (0.67 mmol). The

dark-red (1), (2) and violet (3) precipitates were formed immediately. The products

were collected by filtration, washed with water and left to air dry. The yields were:

62% (1), 73% (2), and 89% (3). All our attempts to obtain the complexes in a crystal-

line form failed. Analyses for C, H, N contents were carried out with a Perkin Elmer

Analyser Model 240. Nickel content was determined with the AAS method. Chro-

mium content was determined spectrophotometrically as CrO 4

2� at � = 372 nm. All

analyses confirmed the composition of the complexes investigated within 0.01–0.79%.

IR spectra were recorded on a Perkin Elmer FT-IR 2000 spectrophotometer. Elec-

tronic spectra were measured on a SPECORD M-40 (Carl Zeiss, Jena) spectro-

photometer. Thermogravimetric analyses were performed on a MOM derivatograph

type OD-102. Powder diffractograms were recorded on an HZ64/A-2 DRON-1

diffractometer. Room temperature EPR spectra were recorded on an ESR Bruker

Physik 418S reflection type spectrometer. Magnetic susceptibility was measured be-

tween 80–300 K by Faraday method. The elemental analyses, spectral data (IR,

UV-VIS) and magnetic studies confirmed that the reactions of [Cr(NCS)6]
3– with the
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cationic [Ni(diamine)2]
2+ complexes yielded thiocyanato-bridged complexes of gi-

ven compositions.

IR spectra of 1–3 are quite similar (Table 1). The most intense absorption band,

close to 2100 cm–1, corresponds to the �C-N of the thiocyanato ligands. It is more com-

plex than the corresponding one for K3[Cr(NCS)6], because the appearance of split

(1) or shoulders (2,3) above 2100 cm–1 and the clear components at lower frequencies

of this band. This observation is in a good agreement with the existence of bridging

thiocyanato ions in complexes and indicates also the presence of terminal N-bonded

NCS– [11]. The appearance of new bands assigned to �C-S further confirms the bridg-

ing nature of the NCS groups [11]. The broad band in FIR spectra at ca. 360 cm–1 is

due to �M-N, exhibiting few shoulders, which point to a superposition of �Cr-N and

�Ni-N. The expected low intensity new �Ni-S band around 200 cm–1 is obscured by

bands of the parent complexes.

Table 1. Selected IR vibration bands of studied complexes in solid state, [cm–1]a.

Complex �(CN) �(CS) �(NCS) �(Cr–N)

and

�(Ni–N)

�(OH) �(HOH)

K3[Cr(NCS)6]�4H2O 2096vs 820vw 479s 360s,br 3430s,br 1622m

[Ni(en)2]3[Cr(NCS)6]2�H2O (1) 2137

2090

2075sh

2055sh

748w

653m

484s 363vs,br 3443m,br masked

[Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2) 2138sh

2098sh

2088sh

2076

836w

691m

484s 362vs,br 3446m,br masked

[Ni(tn)2]3[Cr(NCS)6]2�4H2O (3) 2132sh

2098

2079sh

2055sh

820w

634m

484s 364vs,br 3548s 1616m

Complex �(CH) �(NH2) �(NH) �(CH2) �(NMN) ring

[Ni(en)2]3[Cr(NCS)6]2�H2O (1) 2946m

2886m

1577s 3322s

3286s

3246s

1457m 216m

165m
mas-

ked

[Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2) 2912m,br 1571m 3251m

3189m

3119m

1460s 221sh

191m

429sh

[Ni(tn)2]3[Cr(NCS)6]2�4H2O (3) 2932m

2885m

1587s 3385s

3282s

3241s

1473m 187m,

br
432sh

a) vs – very strong, s – strong, m – medium, w – weak, vw – very weak, br – broad, sh – shoulder.
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The electronic spectra (Table 2) for solid samples exhibit a broad, asymmetric

band in the visible region, making it difficult to identify the band maximum accu-

rately. It is an effect of superposition of Ni(II) and Cr(III) bands. The clear shift of the

first spin-allowed d-d (Ni, Cr) bands to a higher frequency in 2, in comparison with

those in 1 and 3, can be explained by changes in the Ni(II) chromophore, coming from

the differences of the steric interactions between appropriate diamine and axial

thiocyanato ligands [12]. An interesting feature in the spectrum of 1 is the presence of

two sharp low-energy bands at ca. 12400 and 12800 cm–1, which can be attributed to

the mixed spin allowed 3B1g � 3Eg and spin forbidden 3B1g � 1A1,
3B1g � 1B1 Ni(II)

transitions [13] with the intensity gain of the latter, originating from exchange cou-

pling in the complex [14].

Table 2. Approximate positions of bands in electronic spectra.

Complexa Position of bands

[cm–1]b

Assignmentsc

[Ni(en)2]3[Cr(NCS)6]2�H2O (1) 12400

12800

18160

29000br

40000

43850

SF (Ni)

SF (Ni)

d-d (Ni, Cr)

d-d (Ni, Cr); IL (NCS)

CT

CT

[Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2) 13600sh

21000br

30000br

41000

46900

SF (Cr)

d-d (Ni, Cr)

IL (NCS)

CT

CT

[Ni(tn)2]3[Cr(NCS)6]2�4H2O (3) 18120br

24000sh

30000br

40400br

46000sh

d-d (Ni, Cr)

d-d (Ni, Cr)

IL (NCS)

CT

CT

a) spectra recorded in nujol mulls; b) sh – shoulder, br – broad; c) SF – spin-forbidden, CT – charge transfer,

IL – intra ligand.

Thermal behaviour is presented in Table 3. The dehydration occurs in one endo-

thermic step for 1 and 2 and in two endothermic steps for 3. In 3 the temperatures of

consecutive steps of this process in conjunction with the result of TG analysis may in-

dicate a loss of three hydrated water molecules in the first step and one water mole-

cule in the next one. Complexes 1 and 2 melt at 179 and 183°C respectively, whereas

compound 3 decomposes at about 200°C without prior melting. The decomposition

after dehydration runs in five steps in air. It is parallel for 1 and 2 and different for 3 in

view of effects on DTA curves attendant the successive stages. Total decomposition

occurs at ca. 830°C and leads finally to a mixture of NiCr2O4 and NiO in 1:2 ratio,

identified on the basis of powder diffractograms and analysis of TG curves.
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Table 3. Results of thermal analysis, in air.

Process Dehydration 1st stage

of decom-

position

2nd stage

of decom-

position

3rd stage

of decom-

position

4th stage

of decom-

position

5th stage

of decom-

position

Heat effect endothermic exothermic strong exothermic endothermic endothermic endothermic

Complex [Ni(en)2]3[Cr(NCS)6]2�H2O (1)

Tmax [°C]a 64 300 390 545 580 768

Dehydration: weight loss on TG curve – %calc./found: 1.3/1.5

Final products (at 820°C): NiCr2O4 + 2NiO (%calc./found: 27.7/29)

Complex [Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2)

Tmax [°C]a 82 305 442 562 618 800

Dehydration: weight loss on TG curve – %calc./found: 1.2/1.0

Final products (at 840°C): NiCr2O4 + 2NiO (%calc./found: 25.0/25.5)

Complex [Ni(tn)2]3[Cr(NCS)6]2�4H2O (3)

Process Dehydration 1st stage

of decom-

position

2nd stage

of decom-

position

3rd stage

of decom-

position

4th stage

of decom-

position

5th stage

of decom-

position

Heat effect endothermic endothermic exothermic strong

exothermic

endothermic endothermic

Tmax [°C]a 90 178 256 330 440 592 800

Dehydration: weight loss on TG curve – %calc./found: 4.8/4.8

Final products (at 850°C): NiCr2O4 + 2NiO (%calc./found: 25.2/27.8)

a) on DTG curves.

In the Ni3Cr2 polynuclear complex the total number of unpaired electrons is even.

Therefore, all electronic degeneracies should be removed in a zero field and the sys-

tem should be usually EPR silent [15]. As expected, 1 and 3 do not exhibit any EPR

signal. A different behaviour is observed for [Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2)

complex. It shows unusual magnetic (vide infra) and EPR behaviour. The room tem-

perature EPR spectrum of 2, shown in Fig. 1, exhibits two lines, first at low field with

g = 3.90, and a second very broad feature with g = 2.010 and peak-to-peak width

(�Bpp) equal ca. 38 mT. Such broad lines are characteristic of systems with a great

concentration of paramagnetic centres. On the other hand, zero field splitting parame-

ter(s) should be small to render EPR lines observable. In this case, low-field EPR line

arises from �Ms = ±2 forbidden transition, whereas line with g ~ 2 arises from �Ms =

±1 allowed transition [15]. Different behaviour of 2, in comparison with 1 and 3, is

most probably due to a drastic change in the network structure of [Ni(diami-

ne)2]3[Cr(NCS)6]2�nH2O, when two methyl substituents are introduced into one

ethylenediamine nitrogen. Influence of substituents on the structure have been re-

ported for similar complexes, i.e. [Ni(L)2]3[M(CN)6]2�nH2O, where L = en or N-met-

hylethylenediamine and M = Fe or Co [1]. So, EPR behaviour of studied heterocom-

plexes is quite different from the parent Ni(II) and Cr(III) complexes. Therefore, the

metal ions cannot be considered as non-interacting [15].
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Magnetic properties of obtained heterocomplexes were studied down to liquid ni-

trogen temperature. The molar susceptibilities were corrected for diamagnetism us-

ing Pascal’s constants. The effective magnetic moments were calculated from �eff =

2.828 (	 M

corr ·T)1/2. The temperature dependencies of magnetic susceptibilities obey

the Curie-Weiss law, i.e. 	 M

corr = C/(T-
). The best fitted values of the Curie (C) and

Weiss constant (
) are given in Table 4. All complexes studied possess a negative

Weiss constant. The room-temperature effective magnetic moment of 3 has approxi-

mately the expected spin-only value for five noninteracting ions (with S = 1, 1, 1, 3/2,

3/2), which is 7.35 B.M. However, the negative value for 
 and the decrease in the ef-

fective magnetic moment at liquid nitrogen temperature may be caused by an

antiferromagnetic interaction between metal ions [16]. Antiferromagnetic interac-

tion in [Ni(en)2]3[Cr(NCS)6]2�H2O (1) is significantly larger than that in 3 and also

observed for analogous Cu(II)–Cr(III) heterocomplex [8]. Magnetic interaction in 2

is quite different. The effective magnetic moment for 2 is nearly constant down to liq-

uid nitrogen temperature, but is considerably below spin-only value and indicates

drastic changes in the network structure of Ni3Cr2 polynuclear complex. It could be

connected with the introduction of methyl substituents into diamine ligand. So, dif-

ferent pathways for magnetic interaction probably exist in 2 compared with those in 1

and 3.

The exact structure is unknown, but considering the data given above, we can pro-

pose a polymeric structure for the compounds prepared, with thiocyanato bridges be-

tween octahedral nickel(II) and octahedral chromium(III).
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Figure 1. EPR spectrum of [Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O at room temperature (powder, 9.5753

GHz).



Table 4. Parameters from the Curie-Weiss law and magnetic moments for nickel(II)-chromium(III) hete-
rocomplexes.

Complex 	dia�106 Curie constant Weiss

constant

�eff. [B.M.]

[cm3�mol–1] [cm3�K�mol–1] [K] LNT RT

[Ni(en)2]3[Cr(NCS)6]2�H2O (1) –771 7.39 –71 5.51 6.88

[Ni(1,1-dmen)2]3[Cr(NCS)6]2�H2O (2) –900 3.87 –2 5.49 5.56

[Ni(tn)2]3[Cr(NCS)6]2�4H2O (3) –881 7.44 –23 6.84 7.43
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